2 research outputs found

    Data compression, field of interest shaping and fast algorithms for direction-dependent deconvolution in radio interferometry

    Get PDF
    In radio interferometry, observed visibilities are intrinsically sampled at some interval in time and frequency. Modern interferometers are capable of producing data at very high time and frequency resolution; practical limits on storage and computation costs require that some form of data compression be imposed. The traditional form of compression is simple averaging of the visibilities over coarser time and frequency bins. This has an undesired side effect: the resulting averaged visibilities “decorrelate”, and do so differently depending on the baseline length and averaging interval. This translates into a non-trivial signature in the image domain known as “smearing”, which manifests itself as an attenuation in amplitude towards off-centre sources. With the increasing fields of view and/or longer baselines employed in modern and future instruments, the trade-off between data rate and smearing becomes increasingly unfavourable. Averaging also results in baseline length and a position-dependent point spread function (PSF). In this work, we investigate alternative approaches to low-loss data compression. We show that averaging of the visibility data can be understood as a form of convolution by a boxcar-like window function, and that by employing alternative baseline-dependent window functions a more optimal interferometer smearing response may be induced. Specifically, we can improve amplitude response over a chosen field of interest and attenuate sources outside the field of interest. The main cost of this technique is a reduction in nominal sensitivity; we investigate the smearing vs. sensitivity trade-off and show that in certain regimes a favourable compromise can be achieved. We show the application of this technique to simulated data from the Jansky Very Large Array and the European Very Long Baseline Interferometry Network. Furthermore, we show that the position-dependent PSF shape induced by averaging can be approximated using linear algebraic properties to effectively reduce the computational complexity for evaluating the PSF at each sky position. We conclude by implementing a position-dependent PSF deconvolution in an imaging and deconvolution framework. Using the Low-Frequency Array radio interferometer, we show that deconvolution with position-dependent PSFs results in higher image fidelity compared to a simple CLEAN algorithm and its derivatives

    The extended H I halo of NGC 4945 as seen by MeerKAT

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Observations of the neutral atomic hydrogen (H I) in the nuclear starburst galaxy NGC 4945 with MeerKAT are presented. We find a large amount of halo gas, previously missed by H I observations, accounting for 6.8 per cent of the total H I mass. This is most likely gas blown into the halo by star formation. Our maps go down to a 3σ column density level of 5 × 1018 cm−2. We model the H I distribution using tilted-ring fitting techniques and find a warp on the galaxy’s approaching and receding sides. The H I in the northern side of the galaxy appears to be suppressed. This may be the result of ionization by the starburst activity in the galaxy, as suggested by a previous study. The origin of the warp is unclear but could be due to past interactions or ram pressure stripping. Broad, asymmetric H I absorption lines extending throughout the H I emission velocity channels are present towards the nuclear region of NGC 4945. Such broad lines suggest the existence of a nuclear ring moving at a high circular velocity. This is supported by the clear rotation patterns in the H I absorption velocity field. The asymmetry of the absorption spectra can be caused by outflows or inflows of gas in the nuclear region of NGC 4945. The continuum map shows small extensions on both sides of the galaxy’s major axis that might be signs of outflows resulting from the starburst activity. © The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society.RI acknowledges financial support from grant RTI2018-096228-B-C31 (MCIU/AEI/FEDER,UE) and from the State Agency for Research of the Spanish Ministry of Science, Innovation and Universities through the ‘Center of Excellence Severo Ochoa’ awarded to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from the grant IAA4SKA (Ref. R18-RT-3082) from the Economic Transformation, Industry, Knowledge and Universities Council of the Regional Government of Andalusia and the European Regional Development Fund from the European Union. The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. The financial assistance of the South African Radio Astronomy Observatory (SARAO) towards this research is hereby acknowledged (www.sarao.ac.za). At Ruhr University Bochum, this research is supported by BMBF Verbundforschung grant 05A20PC4 and by DFG Sonderforschungsbereich SFB1491. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant agreement no. 882793, project name MeerGas. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no.679627; project name FORNAX).Peer reviewe
    corecore